Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 824
Filtrar
1.
Mar Environ Res ; 197: 106481, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593647

RESUMO

Marine distribution of dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) is greatly affected by the community structures of bacteria, phytoplankton, and zooplankton. Spatial distributions of dissolved and particulate DMSP (DMSPd,p), and DMS were measured and their relationships with DMSP lyase activity (DLA), abundance of DMSP-consuming bacteria (DCB), and the community structures of phytoplankton, zooplankton, and bacteria were determined during summer in the South China Sea (SCS). The depth distributions of DMSPd,p exhibited a similar trend with Chl a, reaching their maxima in the mixing layer. The DMS concentration was positively correlated with DCB abundance and DLA, indicating that DCB and DMSP lyase had a significant effect on DMS production. High DMS concentrations in the horizontal distribution coincided with high DCB abundance and DLA and may be due to the rapid growth of phytoplankton resulting from the high dissolved inorganic nitrogen concentration brought by the cold vortices. Moreover, the highest copepod abundance at station G3 coincided with the highest DMS concentrations there among stations B4, F2, and G3. These results suggest that copepod may play an important role in DMS production. The bacterial SAR11 clade was positively correlated with DLA, indicating its significant contribution to DMSP degradation in the SCS. These findings contribute to the understanding of the effect of the community assemblage on DMSP/DMS distributions in the SCS dominated by mesoscale vortices.


Assuntos
Água do Mar , Compostos de Sulfônio , Animais , Água do Mar/química , Enxofre/metabolismo , Compostos de Sulfônio/química , Compostos de Sulfônio/metabolismo , Sulfetos/metabolismo , Bactérias/metabolismo , Fitoplâncton , China , Zooplâncton/metabolismo
2.
Chem Commun (Camb) ; 60(27): 3725-3728, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38482888

RESUMO

Chemical labeling methods for proteins are highly researched. Herein, we introduced ß-carbonyl sulfonium compounds for selective cysteine modification in proteins within biological systems. Structural tuning led to sulfonium-based probes with high reactivity and selectivity. These probes show excellent biocompatibility, cell uptake, and specificity towards cysteine profiling in live cells.


Assuntos
Cisteína , Compostos de Sulfônio , Cisteína/química , Proteínas/química , Compostos de Sulfônio/química
3.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474273

RESUMO

A series of mono- and heteronuclear platinum(II) and zinc(II) complexes with 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine ligand were synthesized and characterized. The DNA and protein binding properties of [ZnCl2(terpytBu)] (C1), [{cis-PtCl(NH3)2(µ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C2), [{trans-PtCl(NH3)2(µ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C3), [{cis-PtCl(NH3)2(µ-4,4'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C4) and [{trans-PtCl(NH3)2(µ-4,4'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C5) (where terpytBu = 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine), were investigated by electronic absorption, fluorescence spectroscopic, and molecular docking methods. Complexes featuring transplatin exhibited lower Kb and Ksv constant values compared to cisplatin analogs. The lowest Ksv value belonged to complex C1, while C4 exhibited the highest. Molecular docking studies reveal that the binding of complex C1 to DNA is due to van der Waals forces, while that of C2-C5 is due to conventional hydrogen bonds and van der Waals forces. The tested complexes exhibited variable cytotoxicity toward mouse colorectal carcinoma (CT26), human colorectal carcinoma (HCT116 and SW480), and non-cancerous mouse mesenchymal stem cells (mMSC). Particularly, the mononuclear C1 complex showed pronounced selectivity toward cancer cells over non-cancerous mMSC. The C1 complex notably induced apoptosis in CT26 cells, effectively arrested the cell cycle in the G0/G1 phase, and selectively down-regulated Cyclin D.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Metionina/análogos & derivados , Compostos de Sulfônio , Camundongos , Animais , Humanos , Platina/química , Simulação de Acoplamento Molecular , Zinco , Antineoplásicos/farmacologia , DNA/química , Pirazinas
4.
mBio ; 15(3): e0290723, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38329332

RESUMO

Methanethiol (MT) is a sulfur-containing compound produced during dimethylsulfoniopropionate (DMSP) degradation by marine bacteria. The C-S bond of MT can be cleaved by methanethiol oxidases (MTOs) to release a sulfur atom. However, the cleaving process remains unclear, and the species of sulfur product is uncertain. It has long been assumed that MTOs produce hydrogen sulfide (H2S) from MT. Herein, we studied the MTOs in the Rhodobacteraceae family-whose members are important DMSP degraders ubiquitous in marine environments. We identified 57 MTOs from 1,904 Rhodobacteraceae genomes. These MTOs were grouped into two major clusters. Cluster 1 members share three conserved cysteine residues, while cluster 2 members contain one conserved cysteine residue. We examined the products of three representative MTOs both in vitro and in vivo. All of them produced sulfane sulfur other than H2S from MT. Their conserved cysteines are substrate-binding sites in which the MTO-S-S-CH3 complex is formed. This finding clarified the sulfur product of MTOs and enlightened the MTO-catalyzing process. Moreover, this study connected DMSP degradation with sulfane sulfur metabolism, filling a critical gap in the DMSP degradation pathway and representing new knowledge in the marine sulfur cycle field. IMPORTANCE: This study overthrows a long-time assumption that methanethiol oxidases (MTOs) cleave the C-S bond of methanethiol to produce both H2S and H2O2-the former is a strong reductant and the latter is a strong oxidant. From a chemistry viewpoint, this reaction is difficult to happen. Investigations on three representative MTOs indicated that sulfane sulfur (S0) was the direct product, and no H2O2 was produced. Finally, the products of MTOs were corrected to be S0 and H2O. This finding connected dimethylsulfoniopropionate (DMSP) degradation with sulfane sulfur metabolism, filling a critical gap in the DMSP degradation pathway and representing new knowledge in the marine sulfur cycle field.


Assuntos
Sulfeto de Hidrogênio , Rhodobacteraceae , Compostos de Sulfidrila , Compostos de Sulfônio , Rhodobacteraceae/metabolismo , Cisteína , Peróxido de Hidrogênio , Enxofre/metabolismo , Compostos de Enxofre , Oxirredutases/metabolismo
5.
Clin Chim Acta ; 554: 117780, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266970

RESUMO

BACKGROUND: Hydrogen sulfide (H2S) is established as the third gaseous signaling molecule and is known to be overproduced in down syndrome (DS) due to the extra copy of the CBS gene on chromosome 21, which has been suggested to contribute to the clinical manifestation of this condition. We recently discovered trimethylsulfonium (TMS) in human urine and highlighted its potential as a selective methylation metabolite of endogenously produced H2S, but the clinical utility of this novel metabolite has not been previously investigated. We hypothesize that the elevation of H2S production in DS would be reflected by an elevation in the methylation product TMS. METHODS: To test this hypothesis, a case-control study was performed and the urinary levels of TMS were found to be higher in the DS group (geo. mean 4.5 nM, 95 % CI 2.4-3.9) than in the control (N) group (3.1 nM, 3.5-6.0), p-value 0.01, whereas the commonly used biomarker of hydrogen sulfide, thiosulfate, failed to reflect this alteration in H2S production (15 µM (N) vs. 13 µM (DS), p-value 0.24. RESULTS: The observed association is in line with the proposed hypothesis and provides first clinical evidence of the utility of TMS as a novel and more sensitive biomarker for the endogenous production of the third gaseous signaling molecule than the conventionally used biomarker thiosulfate, which is heavily dependent on bacterial hydrogen sulfide production. CONCLUSION: This work shows that TMS must be explored in clinical conditions where altered metabolism of hydrogen sulfide is implicated.


Assuntos
Sulfeto de Hidrogênio , Compostos de Sulfônio , Humanos , Sulfeto de Hidrogênio/metabolismo , Tiossulfatos/metabolismo , Estudos de Casos e Controles , Biomarcadores/urina
6.
Chembiochem ; 25(4): e202300795, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38084863

RESUMO

The acyl-CoA dehydrogenase DmdC is involved in the degradation of the marine sulfur metabolite dimethylsulfonio propionate (DMSP) through the demethylation pathway. The stereochemical course of this reaction was investigated through the synthesis of four stereoselectively deuterated substrate surrogates carrying stereoselective deuterations at the α- or the ß-carbon. Analysis of the products revealed a specific abstraction of the 2-pro-R proton and of the 3-pro-S hydride, establishing an anti elimination for the DmdC reaction.


Assuntos
Compostos de Sulfônio , Enxofre , Enxofre/metabolismo , Compostos de Sulfônio/metabolismo
7.
J Environ Manage ; 351: 119814, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103425

RESUMO

Given the growing volume of discarded lithium-ion batteries (LIBs), the extraction and recovery of valuable metals through environmentally-friendly solvent processes have become crucial, but they remain challenging tasks. Deep eutectic solvent (DES), an innovative and green solvents, have demonstrated significant promise in the extraction of valued metal elements from spent LIBs. This work employed a multifunctional DES based on natural molecules dimethyl-beta-propiothetin (DMPT) and ethylene glycol (EG) for the efficient leaching of transition metal ions. Under the reduction effect of EG and the action of carboxyl groups and chloride ions in DMPT, the leaching rate of Li, Ni, Co, and Mn can reach 99.59%, 99.28%, 99.04%, and 99.45%, respectively. Furthermore, DFT calculations were employed to explore the microstructure of DES and its interactions with metal ions. The main active site in the DES molecule is near the chloride ion, and DES binds most strongly to Mn, followed by Co, and weakest to Ni. This work avoids the use of volatile acids and demonstrates great potential in extracting valuable metals, providing a sustainable and environment-friendly alternative for the efficient recycling of waste LIBs.


Assuntos
Solventes Eutéticos Profundos , Lítio , Compostos de Sulfônio , Cloretos , Metais/química , Fontes de Energia Elétrica , Reciclagem/métodos
8.
Nat Commun ; 14(1): 8080, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057294

RESUMO

The ability of marine bacteria to direct their movement in response to chemical gradients influences inter-species interactions, nutrient turnover, and ecosystem productivity. While many bacteria are chemotactic towards small metabolites, marine organic matter is predominantly composed of large molecules and polymers. Yet, the signalling role of these large molecules is largely unknown. Using in situ and laboratory-based chemotaxis assays, we show that marine bacteria are strongly attracted to the abundant algal polysaccharides laminarin and alginate. Unexpectedly, these polysaccharides elicited stronger chemoattraction than their oligo- and monosaccharide constituents. Furthermore, chemotaxis towards laminarin was strongly enhanced by dimethylsulfoniopropionate (DMSP), another ubiquitous algal-derived metabolite. Our results indicate that DMSP acts as a methyl donor for marine bacteria, increasing their gradient detection capacity and facilitating their access to polysaccharide patches. We demonstrate that marine bacteria are capable of strong chemotaxis towards large soluble polysaccharides and uncover a new ecological role for DMSP in enhancing this attraction. These navigation behaviours may contribute to the rapid turnover of polymers in the ocean, with important consequences for marine carbon cycling.


Assuntos
Quimiotaxia , Compostos de Sulfônio , Quimiotaxia/fisiologia , Ecossistema , Compostos de Enxofre/metabolismo , Compostos de Sulfônio/metabolismo , Bactérias/metabolismo , Polissacarídeos/metabolismo , Polímeros/metabolismo
9.
Sci Adv ; 9(47): eadk1910, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37992165

RESUMO

Endozoicomonas are often predominant bacteria and prominently important in coral health. Their role in dimethylsulfoniopropionate (DMSP) degradation has been a subject of discussion for over a decade. A previous study found that Endozoicomonas degraded DMSP through the dddD pathway. This process releases dimethyl sulfide, which is vital for corals coping with thermal stress. However, little is known about the related gene regulation and metabolic abilities of DMSP metabolism in Endozoicomonadaceae. In this study, we isolated a novel Endozoicomonas DMSP degrader and observed a distinct DMSP metabolic trend in two phylogenetically close dddD-harboring Endozoicomonas species, confirmed genetically by comparative transcriptomic profiling and visualization of the change of DMSP stable isotopes in bacterial cells using nanoscale secondary ion spectrometry. Furthermore, we found that DMSP cleavage enzymes are ubiquitous in coral Endozoicomonas with a preference for having DddD lyase. We speculate that harboring DMSP degrading genes enables Endozoicomonas to successfully colonize various coral species across the globe.


Assuntos
Antozoários , Compostos de Sulfônio , Animais , Antozoários/metabolismo , Bactérias/metabolismo , Compostos de Sulfônio/metabolismo
10.
ISME J ; 17(12): 2340-2351, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37880542

RESUMO

Saltmarshes are highly productive environments, exhibiting high abundances of organosulfur compounds. Dimethylsulfoniopropionate (DMSP) is produced in large quantities by algae, plants, and bacteria and is a potential precursor for dimethylsulfoxide (DMSO) and dimethylsulfide (DMS). DMSO serves as electron acceptor for anaerobic respiration leading to DMS formation, which is either emitted or can be degraded by methylotrophic prokaryotes. Major products of these reactions are trace gases with positive (CO2, CH4) or negative (DMS) radiative forcing with contrasting effects on the global climate. Here, we investigated organic sulfur cycling in saltmarsh sediments and followed DMSO reduction in anoxic batch experiments. Compared to previous measurements from marine waters, DMSO concentrations in the saltmarsh sediments were up to ~300 fold higher. In batch experiments, DMSO was reduced to DMS and subsequently consumed with concomitant CH4 production. Changes in prokaryotic communities and DMSO reductase gene counts indicated a dominance of organisms containing the Dms-type DMSO reductases (e.g., Desulfobulbales, Enterobacterales). In contrast, when sulfate reduction was inhibited by molybdate, Tor-type DMSO reductases (e.g., Rhodobacterales) increased. Vibrionales increased in relative abundance in both treatments, and metagenome assembled genomes (MAGs) affiliated to Vibrio had all genes encoding the subunits of DMSO reductases. Molar conversion ratios of <1.3 CH4 per added DMSO were accompanied by a predominance of the methylotrophic methanogens Methanosarcinales. Enrichment of mtsDH genes, encoding for DMS methyl transferases in metagenomes of batch incubations indicate their role in DMS-dependent methanogenesis. MAGs affiliated to Methanolobus carried the complete set of genes encoding for the enzymes in methylotrophic methanogenesis.


Assuntos
Alphaproteobacteria , Compostos de Sulfônio , Dimetil Sulfóxido/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Bactérias/genética , Bactérias/metabolismo , Alphaproteobacteria/metabolismo , Sulfetos/metabolismo , Compostos de Sulfônio/metabolismo
11.
J Phycol ; 59(5): 963-979, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37464562

RESUMO

Phaeocystis antarctica forms extensive spring blooms in the Southern Ocean that coincide with high concentrations of dimethylsulfoniopropionate (DMSP), dimethylsulfoxide (DMSO), dimethylsulfide (DMS), and acrylate. We determined how concentrations of these compounds changed during the growth of axenic P. antarctica cultures exposed to light-limiting, sub-saturating, and saturating PAR irradiances. Cellular DMSP concentrations per liter cell volume (CV) ranged between 199 and 403 mmol · LCV -1 , with the highest concentrations observed under light-limiting PAR. Cellular acrylate concentrations did not change appreciably with a change in irradiance level or growth, ranging between 18 and 45 mmol · LCV -1 , constituting an estimated 0.2%-2.8% of cellular carbon. Both dissolved acrylate and DMSO increased substantially with irradiance during exponential growth on a per-cell basis, ranging from 0.91 to 3.15 and 0.24 to 1.39 fmol · cell-1 , respectively, indicating substantial export of these compounds into the dissolved phase. Average cellular DMSO:DMSP ratios increased 7.6-fold between exponential and stationary phases of batch growth, with a 3- to 13-fold increase in cellular DMSO likely formed from abiotic reactions of DMSP and DMS with reactive oxygen species (ROS). At mM levels, cellular DMSP and acrylate are proposed to serve as de facto antioxidants in P. antarctica not regulated by oxidative stress or changes in ROS. Instead, cellular DMSP concentrations are likely controlled by other physiological processes including an overflow mechanism to remove excess carbon via acrylate, DMS, and DMSO during times of unbalanced growth brought on by physical stress or nutrient limitation. Together, these compounds should aid P. antarctica in adapting to a range of PAR irradiances by maintaining cellular functions and reducing oxidative stress.


Assuntos
Haptófitas , Compostos de Sulfônio , Dimetil Sulfóxido , Espécies Reativas de Oxigênio , Acrilatos , Carbono
12.
Adv Microb Physiol ; 83: 59-116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37507162

RESUMO

Dimethylsulfoniopropionate (DMSP) is one of the Earth's most abundant organosulfur compounds because many marine algae, bacteria, corals and some plants produce it to high mM intracellular concentrations. In these organisms, DMSP acts an anti-stress molecule with purported roles to protect against salinity, temperature, oxidative stress and hydrostatic pressure, amongst many other reported functions. However, DMSP is best known for being a major precursor of the climate-active gases and signalling molecules dimethylsulfide (DMS), methanethiol (MeSH) and, potentially, methane, through microbial DMSP catabolism. DMSP catabolism has been extensively studied and the microbes, pathways and enzymes involved have largely been elucidated through the application of molecular research over the last 17 years. In contrast, the molecular biology of DMSP synthesis is a much newer field, with the first DMSP synthesis enzymes only being identified in the last 5 years. In this review, we discuss how the elucidation of key DMSP synthesis enzymes has greatly expanded our knowledge of the diversity of DMSP-producing organisms, the pathways used, and what environmental factors regulate production, as well as to inform on the physiological roles of DMSP. Importantly, the identification of key DMSP synthesis enzymes in the major groups of DMSP producers has allowed scientists to study the distribution and predict the importance of different DMSP-producing organisms to global DMSP production in diverse marine and sediment environments. Finally, we highlight key challenges for future molecular research into DMSP synthesis that need addressing to better understand the cycling of this important marine organosulfur compound, and its magnitude in the environment.


Assuntos
Bactérias , Compostos de Sulfônio , Bactérias/genética , Bactérias/metabolismo , Compostos de Sulfônio/metabolismo
13.
Trends Microbiol ; 31(10): 992-994, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37481345

RESUMO

Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur compound with key ecological roles in marine environments. This paper offers a brief insight into the mechanisms, environmental diversity, and importance of DMSP-mediated marine microbial interactions, including algae-microzooplankton interactions, bacteria-microzooplankton interactions, and algae-bacteria interactions. We also highlight current challenges that warrant further investigation.


Assuntos
Compostos de Sulfônio , Interações Microbianas
14.
J Neurophysiol ; 130(1): 56-60, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37283483

RESUMO

Using single neurons of rat paratracheal ganglia (PTG) attached with presynaptic boutons, the effects of suplatast tosilate on excitatory postsynaptic currents (EPSCs) were investigated with nystatin-perforated patch-clamp recording technique. We found that suplatast concentration dependently inhibited the EPSC amplitude and its frequency in single PTG neurons attached with presynaptic boutons. EPSC frequency was higher sensitive to suplatast than EPSC amplitude. IC50 for EPSC frequency was 1.1 × 10-5 M, being similar to that for the effect on histamine release from mast cells and lower than that for the inhibitory effect on cytokine production. Suplatast also inhibited the EPSCs potentiated by bradykinin (BK), but it did not affect the potentiation itself by BK. Thus suplatast inhibited the EPSC of PTG neurons attached with presynaptic boutons at both the presynaptic and postsynaptic sites.NEW & NOTEWORTHY In this study, using single neurons of rat paratracheal ganglia (PTG) attached with presynaptic boutons, the effects of suplatast tosilate on excitatory postsynaptic currents (EPSCs) were investigated with patch-clamp recording technique. We found that suplatast concentration dependently inhibited the EPSC amplitude and its frequency in single PTG neurons attached with presynaptic boutons. Thus suplatast inhibited the function of PTG neurons at both of presynaptic and postsynaptic sites.


Assuntos
Neurônios , Compostos de Sulfônio , Ratos , Animais , Neurônios/fisiologia , Sulfonatos de Arila/farmacologia , Compostos de Sulfônio/farmacologia , Bradicinina/farmacologia , Gânglios
15.
Appl Environ Microbiol ; 89(7): e0025123, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37306587

RESUMO

Dimethylsulfoniopropionate (DMSP) and related organic sulfur compounds play key roles in global sulfur cycling. Bacteria have been found to be important DMSP producers in seawater and surface sediments of the aphotic Mariana Trench (MT). However, detailed bacterial DMSP cycling in the Mariana Trench subseafloor remains largely unknown. Here, the bacterial DMSP-cycling potential in a Mariana Trench sediment core (7.5 m in length) obtained at a 10,816-m water depth was investigated using culture-dependent and -independent methods. The DMSP content fluctuated along the sediment depth and reached the highest concentration at 15 to 18 cm below the seafloor (cmbsf). dsyB was the dominant known DMSP synthetic gene, existing in 0.36 to 1.19% of the bacteria, and was identified in the metagenome-assembled genomes (MAGs) of previously unknown bacterial DMSP synthetic groups such as Acidimicrobiia, Phycisphaerae, and Hydrogenedentia. dddP, dmdA, and dddX were the major DMSP catabolic genes. The DMSP catabolic activities of DddP and DddX retrieved from Anaerolineales MAGs were confirmed by heterologous expression, indicating that such anaerobic bacteria might participate in DMSP catabolism. Moreover, genes involved in methanethiol (MeSH) production from methylmercaptopropionate (MMPA) and dimethyl sulfide (DMS), MeSH oxidation, and DMS production were highly abundant, suggesting active conversions between different organic sulfur compounds. Finally, most culturable DMSP synthetic and catabolic isolates possessed no known DMSP synthetic and catabolic genes, and actinomycetes could be important groups involved in both DMSP synthesis and catabolism in Mariana Trench sediment. This study extends the current understanding of DMSP cycling in Mariana Trench sediment and highlights the need to uncover novel DMSP metabolic genes/pathways in extreme environments. IMPORTANCE Dimethylsulfoniopropionate (DMSP) is an abundant organosulfur molecule in the ocean and is the precursor for the climate-active volatile gas dimethyl sulfide. Previous studies focused mainly on bacterial DMSP cycling in seawater, coastal sediment, and surface trench sediment samples, but DMSP metabolism in the Mariana Trench (MT) subseafloor sediments remains unknown. Here, we describe the DMSP content and metabolic bacterial groups in the subseafloor of the MT sediment. We found that the tendency for vertical variation of the DMSP content in the MT was distinct from that of the continent shelf sediment. Although dsyB and dddP were the dominant DMSP synthetic and catabolic genes in the MT sediment, respectively, both metagenomic and culture methods revealed multiple previously unknown DMSP metabolic bacterial groups, especially anaerobic bacteria and actinomycetes. The active conversion of DMSP, DMS, and methanethiol may also occur in the MT sediments. These results provide novel insights for understanding DMSP cycling in the MT.


Assuntos
Água do Mar , Compostos de Sulfônio , Água do Mar/microbiologia , Bactérias , Sulfetos/metabolismo , Compostos de Sulfônio/metabolismo
17.
Org Biomol Chem ; 21(15): 3083-3089, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36943339

RESUMO

Six dimethylsulfoniopropionate (DMSP) lyases have been shown to cleave the marine sulfur metabolite dimethylsulfoxonium propionate (DMSOP) into DMSO and acrylate. This discovery characterises a missing enzyme relevant to the global sulfur cycle.


Assuntos
Liases , Compostos de Sulfônio , Propionatos , Compostos de Sulfônio/metabolismo , Sulfetos/metabolismo , Enxofre
18.
Sci Rep ; 13(1): 4298, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922620

RESUMO

Although the use of airborne molecules as infochemicals is common in terrestrial plants, it has not been shown to occur in an ecologically relevant context in marine seaweeds. Like terrestrial plants, intertidal plants spend part of their lives emersed at low tide and release volatile organic compounds (VOCs) into the air when they are grazed or physiologically stressed. We hypothesized seaweeds could use airborne VOCs as infochemicals and respond to them by upregulating a keystone defensive metabolite, dimethylsulfoniopropionate (DMSP). We conducted laboratory and field experiments in which Ulva fenestrata was exposed to airborne dimethyl sulfide (DMS), a volatile antiherbivore and antioxidant metabolite released when the seaweed is grazed or physiologically stressed. In the laboratory, U. fenestrata exposed to DMS had 43-48% higher DMSP concentrations, relative to controls, 6-9 days after exposure. In the field, U. fenestrata 1 m downwind of DMS emitters had 19% higher DMSP concentrations than upwind seaweeds after 11 days. To our knowledge, this is the first demonstration of a marine plant using an airborne molecule released when damaged to elicit defensive responses. Our study suggests that the ability to detect airborne compounds has evolved multiple times or before the divergence of terrestrial plants and green algae.


Assuntos
Clorófitas , Compostos de Sulfônio , Ulva , Ulva/metabolismo , Sinais (Psicologia) , Sulfetos/química , Compostos de Sulfônio/metabolismo , Clorófitas/metabolismo
19.
Mater Horiz ; 10(7): 2412-2416, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928054

RESUMO

In microbial consortia bacteria often settle on other organisms that provide nutrients and organic material for their growth. This is true for the plankton where microalgae perform photosynthesis and exude metabolites that feed associated bacteria. The investigation of such processes is difficult since algae provide bacteria with a spatially structured environment with a gradient of released organic material that is hard to mimic. Here we introduce the design and synthesis of a cryogel-based microstructured habitat for bacteria that provides dimethylsulfoniopropionate (DMSP) as a carbon and sulfur source for growth. DMSP, a widely distributed metabolite released by algae, is thereby made available for bacteria in a biomimetic manner. Based on a novel DMSP derived building block (DMSP-HEMA), we synthesized cryogels providing structured surfaces for settlement and delivering the organic material fueling bacterial growth. By monitoring bacterial settlement and performance we show that the cryogels represent microbial arenas mimicking the ecological situation in the plankton.


Assuntos
Criogéis , Compostos de Sulfônio , Criogéis/metabolismo , Compostos de Sulfônio/metabolismo , Bactérias/metabolismo , Plâncton/metabolismo , Ecossistema
20.
Mar Genomics ; 68: 101016, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36894215

RESUMO

Members of the genus Pseudomonas have been frequently isolated from the marine environment, indicating their ecological role in native habitats. One bacterial strain, Pseudomonas sp. BSw22131, was isolated from seawater in Kongsfjorden, Svalbard. The bacterium can grow with algae-derived dimethylsulfoniopropionate (DMSP) as the sole carbon source. Here, we sequenced the complete genome of strain BSw22131, which contained a single circular chromosome of 5,739,290 (G + C content of 58.23 mol%) without any plasmids. A total of 5362 protein-coding genes, 65 tRNA genes, and 16 rRNA genes were obtained. Genome sequence analysis revealed that strain BSw22131 was not only a potential novel species of the genus Pseudomonas but also different from Pseudomonas sp. DMSP-1 that was isolated from the same habitat and also utilized DMSP as the sole carbon source for growth. The results can be helpful for understanding the catabolism of the genus Pseudomonas in sulfur cycling in the Arctic fjord ecosystem.


Assuntos
Ecossistema , Compostos de Sulfônio , Bactérias/genética , Água do Mar/microbiologia , Compostos de Sulfônio/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...